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We design a new boundary condition on the stream function at outflow for the steady 
incompressible Navier-Stokes equations written in the stream function-vorticity formulation 
by using a Fourier transform in the direction perpendicular to the flow. Our open boundary 
condition is compared to the Dirichlet and Neumann boundary conditions by computing the 
flow past an ellipse of excentricity 50%. Our boundary condition proves to be the most 
accurate and thus the most time saving. $5 1989 Academic Press, Inc. 

1. INTRoDUCT10~ 

Many numerical simulations of viscous fluid flow problems in physically 
unbounded exterior domains are carried out in “truncated” physical computational 
domains. Outflow boundary conditions such as Neumann or Dirichlet boundary 
conditions for the dependent variables are then usually prescribed. This careless 
truncation leads sometimes to instability in the numerical scheme and very often to 
inaccuracy in the solution. The only way to improve the accuracy is to use a quite 
large computational domain. The cost of the simulation is then increased. Thus, the 
accuracy of the outflow boundary condition and the computational cost are closely 
related and a more costly boundary condition that can be used closer to the body 
can in fact save computational time if the simulation is considered as a whole. The 
effects of truncation have been considered by Moretti [ 11, Moretti and Abbet [2], 
Wang and Longwell [3], and by Dekruif and Hassan [4]. 

The ideal would be to use outflow boundary conditions such that the solution in 
the truncated domain is equal to the solution in the infinite domain. Such boundary 
conditions will be referred to as exact open boundary conditions. Such boundary 
conditions for the linearized Navier-Stokes equations (called Oseen equations and 
which are also valid at high Reynolds number, see Vorus [S]) in the velocity- 
pressure formulation and for a domain unbounded in the direction perpendicular to 
the flow have been designed by Halpern [6] and Halpern and Schatzmann [7]. 
These boundary conditions are then applied to the Navier-Stokes equations. Due 
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to the nonlinearity, they are no longer exact and will be referred to as open 
boundary conditions. The purpose of this paper is to design open boundary 
conditions for the steady state in the stream function-vorticity formulation in the 
case when the domain’is bounded in the direction perpendicular to the flow. The 
steady state is computed as the limit in time of the unsteady Navier-Stokes equa- 
tions. The vorticity is the solution to a transport equation for which local open 
boundary conditions have been proposed in [6] and are used here. Thus, only the 
new boundary condition on the stream function is tested. Taking advantage of the 
fact that we want to compute the steady state, the Poisson equation for the stream 
function is solved by coupling with the steady problem in the exterior domain and 
using eigenmode expansions. Coupling methods with simpler problems in the 
exterior domain are widely used, especially in fluid mechanics in connection with 
integral methods (see Johnson and Nedelec [8], Sequeria [9]) or Fourier methods 
(see Ferm [lo], Ferm and Gustafsson [ 111, Lenoir [ 121, Hagstrom [ 131). Let us 
notice that Fornberg [14] designed an open boundary condition in the case where 
the vorticity can be neglected by using explicit solutions of flow around vortex 
rings. It seems that our outflow boundary condition and Fornberg’s are quite 
similar when the vorticity can be neglected at the boundary. 

The paper is organized as follows: in Section 2, we present Navier-Stokes 
equations in stream function-vorticity formulation. In Section 3, we present the 
numerical method used for solving the Navier-Stokes equations. In Section 4, we 
design a new boundary condition at outflow for the stream function. In Section 5, 
we present the numerical implementation of our boundary condition. In Section 6, 
the results obtained with the boundary conditions designed in Section 4 are 
compared to the ones obtained with Dirichlet and Neumann boundary conditions. 
In Section 7, we conclude. 

2. NAVIER-STOKES EQUATIONS 

Throughout this paper, we consider the 2-dimensional unsteady incompressible 
Navier-Stokes equations. The velocity-pressure formulation is: 

au au au t+uz+us= -pax l p+v ($+$) 

“+d”=o, 
ax ay 

where t is the time, u and v are the components of the velocity in the x and y coor- 
dinate directions, p is the density, p is the pressure, and v is the kinematic viscosity, 
R, is the region occupied by the body (see Fig. 1). aQ2, is the boundary of Q,. 
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FIG. 1. Physical domain. 

The stream function vorticity formulation is obtained by introducing $ the 
stream function defined by 

a* -=u 
ay 

and a* 
ax= -lJ. 

The existence of II/ is due to the incompressibility of the fluid. The vorticity w is: 

au au 
“‘G-G (1.3) 

The unsteady Navier-Stokes equations are written in dimensionless form in the 
stream function-vorlticity formulation: 

aa ,+ug+v$=&($+$) 
a’* al* 
g+ayZ= --o 

(1.4) 

(Re is a Reynolds number). As for the boundary conditions, they consist of 
boundary conditions on the body and at infinity. The no-slip condition on CJQC is 
+, =0 and qY = 0. These two boundary conditions on + have to induce one 
condition on tj and one on o. This is done in a classical way: at the rigid wall, the 
tangential velocity is zero and, if n denotes the exterior normal at the wall, 
a*$/&* = --o. The boundary conditions at infinity are easy to handle. Indeed, v 
tends to zero and u to U, at infinity. 

Thus, 

IO+0 (1.5a) 

(1.5b) 
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FIG. 2. Physical grid near the ellipse. 

3. OUTLINES OF THE NUMERICAL CODE 

This code computes the fluid flow past an ellipse of variable excentricity. The 
ellipse is aligned with the stream and the flow is thus symmetrical. The grid is made 
up with streamlines and equipotential lines for an analytic solution to the incom- 
pressible Euler equations. This grid is orthogonal and matches the streamlines of 
the perfect fluid flow (see Fig. 2). By use of a conformal map, this grid is mapped 
to a rectangular grid (see Fig. 3) and the ellipse to a segment on the axis of 
symmetry. The transformed Navier-Stokes equations (1.4) take the form 

(2.la) 

(2.lb) 

Here, Re = 2u,l/v (1= half-chord of the ellipse), X and Y are the new space coor- 
dinates, f is the Jacobian of the mapping. Far away from the body, f can be 
approximated by 1. The origin is located at the center of the ellipse. 

The system (2.1) is solved using a time-marching procedure: Given rj and o 
at time t, u and v are derived from (1.2). o( t + At) is inferred from the advection- 
diffusion equation (2.la). I(l(t + At) is then computed by solving the Poisson 
equation (2.1 b) with the value of o at time t + At. 

The method used here has been proposed and implemented by Ta Phuoc Lot 

Lateral boundary 

/ / 

Symmetry axis 
transformed ellipse 

“L 
X 

FIG. 3. Numerical grid. 



108 F.NATAF 

and Daube [IS]. We simply modified the inflow and outflow boundary conditions. 
It is a combination of two numerical schemes, a fourth order in the space compact 
method for the solution of Eq. (2.lb) and a second order one for Eq. (2.la). We 
present now the outlines of the compact fourth order scheme. It is a compact 
Hermitian finite-difference scheme. The fourth order accuracy is achieved with a 
three-point approximation and by the introduction of the first and second 
derivatives of the unknown variables as the unknowns of the problem. This techni- 
que has been proposed by Collatz [ 161 and Kreiss (see Orszag and Israeli [ 171) 
and developed by Hirsch [ 181 in the solution of some problems in fluid mechanics. 

Let h denote the spatial step of discretization, and g,,g:, and g:‘, the values of the 
function g and its first and second derivatives at node i. The following tridiagonal 
relations can be written: 

g:~,+4g:+gj+I=3(gi+,-gi~,)lh+B(h4) 

g:‘_ I+ lOgj’+ g:‘+ 1 = l2(gj+ r -2gi+ g;- *)/h’+ O(h4). 

Thus, one must impose boundary conditions not only for the unknown g, but 
also for its first and second derivatives and we have two types of boundary condi- 
tions. The first ones are related to the compact fourth order scheme and ensure the 
consistency of the numerical scheme. The second ones are related to the physical 
boundary conditions at infinity and we shall design open boundary conditions. The 
equations are solved by an AD1 method; i.e., they are discretised by a finite 
difference method and the systems are solved by alternate sweeps over the columns 
and over the rows. The convergence is accelerated by the use of relaxation 
coefficients (see Wachpress [ 191). For the computation of w, an AD1 algorithm is 
applied to solve the transport equation for the vorticity and an upwind scheme with 
second-order corrections is used for the discretization of the convective term. 

4. OPEN BOUNDARY CONDITJON AT OUTFLOW 

In [7], the authors designed open outflow boundary conditions for the fluid flow 
past a body in the velocity-pressure formulation and established error estimates 
and well-posedness theorems for the linearized equations. In a region sufficiently far 
from the body, the Navier-Stokes equations are linearized about the constant state 
at infinity. The resulting system can be solved explicitly in the Fourier space, which 
provides an integro-differential (in t and y) relation between U, v, and p at each 
point x. These relations are simpler than the linearized Navier-Stokes equations 
and are used as open boundary conditions. In a previous paper [6], the same work 
was done for the transport equation for vorticity and a series of open boundary 
conditions were designed. The first one is w, + u, o, = 0, it is local in time and 
in space. The term w, + U,W, is the convection term of the linearized transport 
equation. Thus the nonlinear equivalent of the linear boundary condition is: 

0,+240~+00,.=0. (3.1) 
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This nonlinear outflow boundary condition is the one we used and was already 
implemented in the code. Thus, we still have to design a new boundary condition 
for the stream function. 

The adaptation of the previous works to the stream function vorticity formula- 
tion introduces two difficulties: the domain we consider here is bounded in the 
direction perpendicular to the flow and we have to design boundary conditions for 
the Poisson equation (2.lb). The former is easily (at least formally) overcome by 
considering eigenmodes expansion instead of the Fourier transform. The latter is 
much more serious, since the right-hand side in (2.lb) is not compactly supported 
in the computational domain and furthermore is not known outside Sz. Since we 
obviously do not want to compute w(t+dt) outside the computational domain 
(denoted QT), we shall replace it by something easily expressed analytically. Taking 
advantage of the fact that we actually compute the steady state, we replace 
o(t+dt) outside Q, by taking the steady state 0’. Let us make this more precise. 

Since the computational domain is bounded in the y direction, it is necessary to 
have lateral boundary conditions. Let y lies between 0 and L. Consider a fluid flow 
around a body (domain Q,) in a slipping tube defined by 0 6 y 6 L and x E R (see 
Fig. 4). A slipping tube is a tube where fluid flows without dissipation at the wall 
of the tube. These properties yield the following boundary conditions at the wall of 
the tube: 

At the solid wall, the tangential velocity and the tangential stress rr12 are zero. 
Since o12 = p(&/@ + &1/8x) and u is zero, we have that au/@ = 0. Thus, in the 
stream-function vorticity formulation, 0 = 0 is equivalent to 

a$/ax = 0 (3.2a) 

and &lay = 0 and au/ax = 0 imply 

w = 0. (3.2b) 

The boundary conditions (3.2a) and (3.2b) at the wall of the tube being 
established, we are able to design an outflow boundary condition. The behavior at 
infinity is still given by (1.5). 

l,,-zy@; ,,,,,I ,,,, rl. 
y.0 

FIG. 4. Ellipse in the tube. 



110 F. NATAF 

Let us consider a strip b < x < c,.O < y < L and QT = {(x, y)/b < x< c and 
0 < y < L}/Q,. If c is large enough, it is possible to linearize the equations outside 
QT; f is approximated by 1 and the design of open boundary conditions can be 
studied by taking Eq. (1.4). Furthermore, in R2/QT the flow is almost constant, 
equal to u m = a and v, = 0, a is assumed to be positive. In the stream function-vorticity 
formulation, we have: @, = uy + C” and w = 0. 

Consider the linearized steady Navier-Stokes equations: 

lam, = VAO 

[A$ = --co, x>candO<y<L 

with the following boundary conditions: 

(3.3a) 

(3.3b) 

W(C> Y)=%(Y) and ti(c, Y) = I(/o(Y) 

w=Oand$=O at infinity 

o=Oanda$/&=O at y=Oandy=L. 

The compatibility of the boundary conditions is ensured by: 

o,=o at y=Oandy=L 

*0=0 at y=Oandy=L. 

Hence, the boundary condition at the wall of the tube is simply 

*=o at y=Oandy=L; 

$ and o have the same boundary condition at the wall of the tube. Thus, (3.3) can 
be solved by separation of variables. Consider first the advection diffusion equation. 
w is sought in the form x U,(X) rp,( y). Let U(X) cp( y) be a solution to (3.3). We 
have 

- (a/v)cd + Lx” v” = -- = k, 
CI cp 

where k is a real constant. Thus, cp has the form: 

Ae’ $Y + Be ~ i Ji;Y, 

The boundary condition at y = 0 and y = L gives ~(0) = q(L) = 0. The existence 
of nontrivial solutions is equivalent to: 

k”2=ndL nEN*. 

Therefore, cp = 2iA sin(nrcy/L). Let 

44~) = sWw/L). (3.4) 
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It is well known that (~p,)~ 2 1 is an orthogonal base of Hi(]O, L[). Therefore, o 
can be sought in the form: 

44 Y) = f a,(x) CP,(Y). 
Ila1 

We shall need the expansion of o0 on the basis (cp,),, 1, 

o is a solution to the advection diffusion equation and hence, a,, solves the second- 
order ordinary differential equation: 

aak(x) - vaI(x) - v y ( > 
2 

a,(x) = 0, xac,n>1 

a,(c) = ai 

a,(x) + 0 as x-00. 

It is easy to see that there is a unique solution (an)npN. to this equation, 

a n (x) = aoei.-(“)(x-c) 
n 

where 

A-,,,=(a-&iqgp 
Thus, 

n7t 
0(x, y) = f aJle’-(n)(x-c) sin y y . 

n>l ( ) 
(3.5) 

Once o is given, $ solves the Poisson equation: 

/At/k= --o x2c,O<y<L 

I$(C> Y) = +0(Y) 

I $(x9 0) = $4x, L) = 0 

W-0 at infinity. 

At the wall of the tube, $ is zero. Therefore, tj can be expanded on the basis 
((PnL>l: 

$(x3 Y) = : Y,(X) cp,(Y). (3.6) 
II31 

5Sl/S5/l-8 
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We shall need the expansion of t+GO on (cp,),, 1 : 

yn is a solution to the second-order differential equation 

y,(x) = --CL,(x) = +pe~-(“)(“-‘), X>C,?Z>l 

Y,(C) = r: 

Y,(X) + 0 as x+co. 

There is a unique solution to this equation: 

Yn(X)=yIle~‘““lL”“-~)_ 4 
1, - (n)’ - (nn/L)’ (e ~-(n)(J-L.)_,~(nn/L)(x~r) 1 (3.7) 

which gives the value of I,+, given the values of I,IQ and w at x = c. 

Remark. The way we designed our boundary condition for $ can be seen as a 
coupling between Navier-Stokes equations for x < c and Oseen equations for x 2 c. 
Since the last equations can be solved explicitly, the coupling can be made on the 
outflow boundary at x = c. 

The numerical implementation of the new boundary condition derived from (3.7) 
is the subject of the next section. 

5. NUMERICAL IMPLEMENTATION 

We take advantage of the solving of Navier-Stokes equations by an AD1 (see 
Section 2) method to use the following algorithm. 

ALGORITHM. At each step of time, the Poisson equation for II/ is solved by an 
AD1 methode, i.e., by alternate sweeps over the rows and over the columns of the 
grid. The outflow boundary condition can be implemented in a simple manner. 

Nx-I Nx 

FIG. 5. Grid at outflow. 
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During a sweep over the columns: 

(1) after the computation of the new values of $ on the last but one column 
(column Nx - 1, see ‘Fig. 5), expand w( t, Nx - 1, . ) and II/( t, Nx - 1, . ) on the base 
isin(n71yl~)l,,t. 

(2) Calculate the coordinates of $(t, Nx, .) by formula (3.7). 
(3) + on the last column NX is calculated by summation of series (3.6). 

Remark. In step (l), the coefficients are computed by identification on the 
column of the sum of the series with the values of the function at the nodes of the 
grid. Therefore, the number of coefficients is equal to the number of nodes on the 
grid. By using a rough Fourier transform, the open boundary condition increases 
the computational time by about 15%. As will be seen in the next section, this extra 
cost is compensated by the accuracy of the solution. Furthermore, the cost can be 
reduced by the use of fast Fourier transform. 

6. NUMERICAL RESULTS 

We computed the flow past an ellipse of excentricity 50% at Re = 100, using 
different types of inflow and outflow boundary conditions on $. Behind the ellipse, 
there is a large bubble wake followed by a wake (see Fig. 6). 

For each type of computation, we use the boundary conditions for o: At 
x=b:o=O and at x=c:w,+~w,+uo~=O. 

For each type of computation, we use on the top boundary (wall of the tube), 
the boundary conditions of a slipping tube (i.e., w =0 and u =O), and on the 
symmetry axis, w = 0 and 1+9 = 0. 

To test the open boundary condition, we made three types of computation using 
different types of inflow and outflow boundary conditions on +: 

Type 1. A Dirichlet boundary condition, t+Q(b, y) = t&c, y) = $,, i.e., u = u,. 

FIG. 6. Flow field near the ellipse: (a) velocity field; (b) streamlines. 
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Type 2. A Neumann boundary condition, all//ax = 0 (i.e., o = 0) at x = b and 
x = c. 

Type 3. At x=c, we use the open boundary condition we have just 
presented. At x= b, since o is taken to be zero it is easy to design an open 
boundary condition for the equation AJ/ = 0 by the same method we have used 
so far. 

In any case, the boundary is located behind the bubble wake. 
The results are compared with an “exact” solution. This solution is obtained by 

using outflow and inflow boundaries very far from the ellipse, on which are 

FIG. 7. Values and errors on $, U, v, and o at outflow as a function of the distance to the symmetry 
axis for Dirichlet (-- ), Neumann ( . . . ), and transparent (---) boundary conditions (exact solution 
in -). 
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prescribed open or Neumann boundary conditions (since the domain was quite 
large, the two solutions were very close to each other). The boundary cannot be 
located too close to the bubble wake, since otherwise the errors produced by any 
of the boundary conditions are too important. In our case, the boundary is located 
far enough from the bubble wake at x = 10. The ellipse is located between 
x = -1.35 and x = 1.35. 

Comparison of the Different Boundary Conditions 

As expected, the Dirichlet boundary condition proves to be very inaccurate (see 
Fig. 7 and Table I). The reason is that in the wake, the flow is very decelarated and 
that in the region outside the wake, the flow is still accelerated. Therefore, in the 

0 5 10 15 

DISTANCE FROM AXIS: Y 

FIG. F-Continued 
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0,02t f-=3+ .%__ --._ ‘1 c1----- -5--___ ----___ 0.00 --_I_ -... 
g 

r7 
~-0.02 + z 
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DISTANCE FROM AXIS: Y 

FIG. ‘I-Continued 

TABLE I 

Outflow Boundary at x = 10 

Boundary conditions 

Error in 
norm Ll(%) 

Transparent Neumann Dirichlet 

Stream function $ 0,46 1.63 8.7 
u 1.93 6.24 32.2 
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FIG. 8. Values and errors on $, u, II, and w at outflow as a function of the distance to the symmetry 
axis for Neumann (---) and transparent (- ) boundary conditions (exact solution is -). 
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FIG. 9. Values and errors on $, ZI, II, and w at inflow as a function of the distance to the symmetry 
axis for Neuman (---) and transparent (- ) boundary conditions (exact solution is -). 
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following, we will only compare the last two boundary conditions. The open 
boundary condition proves to be more accurate than the Neumann boundary 
condition. The L’ norm of the error is roughly three times as small. The error, near 
the outflow boundary (see Fig. 8), produced by the open boundary condition is 
twice as small as the one made with the Neumann boundary condition. The only 
exception is the error on u near the wall of the tube. The reason is most probably 
that in the Neumann case u = 0 is prescribed at outflow and at the wall of the 
tube, while our open boundary condition is designed in a different way from the 
boundary condition at the wall of the tube, and their compatibility is not so well 
ensured in the implementation. At inflow o =0 and thus the open boundary 
condition becomes exact while the Neumann boundary condition still produces 
errors (see Figs. 9 and 10). Thus, it seems that an improvement of the open 
boundary condition should be to take into account the nonlinearity of the 
governing equations. This problem is quite difficult and does not seem to have been 
solved yet. In fact, it seems that it would be sufficient to linearize the equations 
around a state depending only on the direction perpendicular to the main flow, 
since in a wake the flow depends mainly on y only. 

An other interesting point is the spatial dependance of the solution on the inflow 
and outflow boundary conditions. On Fig. 10, one sees that the error before 
the ellipse depends on the inflow boundary condition and that the error after the 
separation point depends mainly on the outflow boundary condition. But, from 
the front of the ellipse up to the separation ppoint, the error depends much less on 
the inflow and outflow boundary conditions. The boundary of the ellipse has a 
major influence. This can be related to the fact that in this region, the Prandtl 
equations can be applied. These equations depend only on an initially guessed 
pressure and using the pressure issued from a perfect fluid flow computation gives 
acceptable results. 

7. CONCLUSION 

A new boundary condition for the stream function is designed for the steady 
Navier-Stokes equations by using the linearized equations. This boundary condi- 
tion is compared to the Dirichlet and Neumann boundary conditions. Our new 
boundary condition proves to be more accurate, especially for the Dirichlet bound- 
ary condition. And thus it is time saving, since for a given accuracy it is possible 
to use a smaller computational domain. It also has the advantage to have a firm 
mathematical basis (see [6,7]). We also implemented a new boundary condition at 
inflow for the stream function. If one is interested in unsteady solutions, it would 
be necessary to design an open boundary condition for the unsteady Navier-Stokes 
equations. 
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